Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
Indian J Community Med ; 49(2): 424-428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665460

RESUMO

Essential care workers like police personnel, social workers, and office and administrative staff of health institutions are also at increased risk of coronavirus disease 2019 (COVID-19) exposure along with healthcare workers. The present study aims to estimate the distress, anxiety, depression, and sleep impact of COVID-19 pandemic on essential workers through an online survey. This cross-sectional study (included 369 participants) was conducted in Chandigarh through an online survey using three psychological scales: Peritraumatic Distress Inventory (PDI), Insomnia Severity Index, and Depression Anxiety Stress Scale. Three-hundred-sixty-nine frontline warriors from hospital and community settings were included in the study. The respondents include police personnel (274; 73.66%), office staff (24; 6.45%), social workers (53; 14.24%), and media staff (21; 5.65%). Maximum distress was reported by media/transport officials on duty (85.7%). The majority of them scored high (>14), and slightly less than one-fourth (23.8%) scored significantly abnormal (>23) on PDI. About 42.9% reported moderate insomnia, 52.4% exhibited severe anxiety, and 33.3% of media/transport participants reported severe depression. Psychological morbidity is high in media/transport and social workers working in the community during the COVID-19 pandemic.

2.
FEBS Lett ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639734

RESUMO

MTS1338, a distinctive small RNA in pathogenic mycobacteria, plays a crucial role in host-pathogen interactions during infection. Mycobacterial cells encounter heterogeneous stresses in macrophages, which highly upregulate MTS1338. A dormancy regulatory factor DosR regulates the intracellular abundance of MTS1338. Herein, we investigated the interplay of DosR and a low pH-inducible gene regulator PhoP binding to the MTS1338 promoter. We identified that DosR strongly binds to two regions upstream of the MTS1338 gene. The proximal region possesses a threefold higher affinity than the distal site, but the presence of both regions increased the affinity for DosR by > 10-fold. PhoP did not bind to the MTS1338 gene but binds to the DosR-bound MTS1338 gene, suggesting a concerted mechanism for MTS1338 expression.

3.
Phys Chem Chem Phys ; 26(15): 11922-11932, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572672

RESUMO

In recent times, self-assembled electron transport materials for optoelectronic devices, both solar cells and organic light-emitting diodes (OLEDs), have been gaining much interest as they help in fabricating high-efficiency devices. However, designing organic small molecular materials with star-shaped self-assembled networks is a challenge. To achieve this sort of target, we chose triazine and benzene-1,3,5-tricarbonyl cores for developing such architecture, and we developed four molecular systems, vizTCpCN, TCmCN, TmCN, and TpCN. Successful isolation of single crystals followed by structural analysis of TmCN revealed interesting molecular arrangements in the solid state resulting in the formation of a waterwheel type architecture with an extended network bearing characteristic voids. Theoretical calculations was carried out to check their electron transportability. The natural transition orbital calculation helped in understanding the locally excited and charge transfer excited states. The low electron reorganization energies of these molecules indicated that these materials may have potential to be used in electron transport layers of optoelectronic devices, particularly in OLEDs. Moreover, the assembled networks have a relatively wide surface area and linked structures, which are advantageous for the conduction of carriers with poor electron recombination inside the ETL, and these may offer a straightforward channel for electron conduction to the emissive layer. Finally, the fabricated electron-only device indicated that the synthesized materials may be used as ETMs in the electron transport layer of optoelectronic devices.

4.
PeerJ ; 12: e17190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560461

RESUMO

Maize production and productivity are affected by drought stress in tropical and subtropical ecologies, as the majority of the area under maize cultivation in these ecologies is rain-fed. The present investigation was conducted to study the physiological and biochemical effects of 24-Epibrassinolide (EBR) as a plant hormone on drought tolerance in maize. Two maize hybrids, Vivek hybrid 9 and Bio 9637, were grown under three different conditions: (i) irrigated, (ii) drought, and (iii) drought+EBR. A total of 2 weeks before the anthesis, irrigation was discontinued to produce a drought-like condition. In the drought+EBR treatment group, irrigation was also stopped, and in addition, EBR was applied as a foliar spray on the same day in the drought plots. It was observed that drought had a major influence on the photosynthesis rate, membrane stability index, leaf area index, relative water content, and leaf water potential; this effect was more pronounced in Bio 9637. Conversely, the activities of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) increased in both hybrids under drought conditions. Specifically, Vivek hybrid 9 showed 74% higher CAT activity under drought conditions as compared to the control. Additionally, EBR application further enhanced the activity of this enzyme by 23% compared to plants under drought conditions. Both hybrids experienced a significant reduction in plant girth due to drought stress. However, it was found that exogenously applying EBR reduced the detrimental effects of drought stress on the plant, and this effect was more pronounced in Bio 9637. In fact, Bio 9637 treated with EBR showed an 86% increase in proline content and a 70% increase in glycine betaine content compared to untreated plants under drought conditions. Taken together, our results suggested EBR enhanced tolerance to drought in maize hybrids. Hence, pre-anthesis foliar application of EBR might partly overcome the adverse effects of flowering stage drought in maize.


Assuntos
Brassinosteroides , Esteroides Heterocíclicos , Estresse Fisiológico , Zea mays , Secas , Antioxidantes/farmacologia , Água/farmacologia
5.
Ann Neurosci ; 31(1): 21-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38584979

RESUMO

Background: Internet is an integral part of the daily life of everyone. Internet addiction (IA) is one of the major concerns, specifically among young adults. The association between IA, depression, anxiety, and psychological well-being (PWB) is least studied in young adults. Purpose: To evaluate IA and its association with psychological morbidity and PWB in a larger sample size. In addition, to examine the factors that are associated with IA. Methods: A total of 1287 young students were evaluated in the present study. Participants were evaluated on the Internet Addiction Test (IAT), Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder-7 (GAD-7), and Psychological Well-Being Index-22. Results: The mean age of the study's participants is 19.5 years. The majority were female (68.9%), from nuclear families (61.8%), and belonged to urban localities (61.5%). On IAT, 15.9% had a presence of IA with a cut-off score of 50. 27.4% and 20.5% had a presence of depression and anxiety with a cut-off score of 10 on the PHQ-9 and GAD-7, respectively. Approximately two-thirds (66.7%) reported poor PWB. IA had a significant positive association with depression and anxiety and a negative association with PWB. Male students, the presence of depression, anxiety, and poor PWB were independent factors associated with IA. Conclusion: Internet addiction is highly prevalent among college students and has a significant association with anxiety, depression, and poor PWB. There is a need to develop a structured plan, educational strategy, and program to minimize IA in young adults.

6.
Polymers (Basel) ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611187

RESUMO

Polymer-semiconductor hybrid materials or composites have been investigated with respect to their microstructure, optical, photoconductive, and ferroelectric properties. For this purpose, either CdSe quantum dots or (Cd:Zn)S microparticles were dispersed in poly(vinylidenefluoride-trifluoroethylene) solution and hot pressed to films. In both material systems, the electrical conductivity and the polarization behavior could be controlled by the intensity of the optical excitation. The simultaneous high optical transparency of the CdSe quantum-dot-based hybrid materials makes them particularly interesting for applications in the field of flexible, high-resolution sensors.

7.
Environ Sci Pollut Res Int ; 31(17): 25406-25423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472578

RESUMO

This study assessed the air quality status in different functional zones of Dhanbad-a coal-mining and industrial hub, based on the measurement of aromatic and halogenated volatile organic compounds (VOCs) using gas chromatography. The study encompasses source apportionment of VOCs and their chemical reactivity in terms of OH radical loss rate (LOH), ozone-forming potential (OFP), and their secondary organic aerosol forming potential (SOAp). Furthermore, prioritization of VOCs based on a fuzzy-analytical hierarchical process (F-AHP) has also been done. The results found xylene species to have the highest concentration in all three seasons across traffic-intersection and industrial zones and toluene at the institutional zone. The study identified four sources using positive matrix factorization (PMF) model, viz., mixed traffic exhaust (35%), coal combustion sources (30%), industrial (26%), and solvent usage (9%). LOH and SOAp were ~ 16 times more at the industrial and traffic-intersection zone than the institutional zone. The aromatic species contributed 97% to the OFP, and many species exhibited less contribution to the mixing ratio of VOCs but displayed a high contribution to LOH, OFP, and SOAp, suggesting the need to prefer reactivity-based strategies in addition to concentration-based strategies in the future for their regulation. The F-AHP-based priority component analysis identified 16 species out of 29 in the priority watch list (nine in tier-1, four in tier-2, and three in tier-3). The paucity of data and lack of ambient air quality standards on VOCs (except benzene) make it difficult to determine which aspect should be dealt with first and which species require more attention. Therefore, the F-AHP method used in this study could help identify the influencing parameters to be considered while devising efficient VOC management policies.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Sabões/análise , Monitoramento Ambiental , Emissões de Veículos/análise , Ozônio/análise , Índia , Aerossóis/análise , Carvão Mineral/análise , Mineração , China
8.
Langmuir ; 40(10): 5137-5150, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412064

RESUMO

Imidazole, being an interesting dinitrogenic five-membered heterocyclic core, has been widely explored during the last several decades for developing various fascinating materials. Among the different domains where imidazole-based materials find wide applications, the area of optoelectronics has seen an overwhelming growth of functional imidazole derivatives developed through remarkable design and synthesis strategies. The present work reports a design approach for integrating bulky donor units at the four terminals of an imidazole core, leading to the development of sterically populated imidazole-based molecular platforms with interesting structural features. Rationally chosen starting substrates led to the incorporation of a bulky donor at the four terminals of the imidazole core. In addition, homo- and cofunctional molecular systems were synthesized through a suitable combination of initial ingredients. Our approach was extended to develop a series of four molecular systems, i.e., Cz3PhI, Cz4I, Cz3PzI, and TPA3CzI, containing carbazole, phenothiazine, and triphenylamine as known efficient donors at the periphery. Given their interesting structural features, three sterically crowded molecules (Cz4I, Cz3PzI, and TPA3CzI) were screened by using DFT and TD-DFT calculations to investigate their potential as hole transport materials (HTMs) for optoelectronic devices. The theoretical studies on several aspects including hole reorganization and exciton binding energies, ionization potential, etc., revealed their potential as possible candidates for the hole transport layer of OLEDs. Single-crystal analysis of Cz3PhI and Cz3PzI established interesting structural features including twisted geometries, which may help attain high triplet energy. Finally, the importance of theoretical predictions was established by fabricating two solution-process green phosphorescent OLED devices using TPA3CzI and Cz3PzI as HTMs. The fabricated devices exhibited good EQE/PE and CE of ∼15%/56 lm/W/58 cd/A and ∼13%/47 lm/W/50 cd/A, respectively, at 100 cd/m2.

9.
J Maxillofac Oral Surg ; 23(1): 16-22, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38312965

RESUMO

Background: Head and neck cancer is the most common cancer around the globe, following lung cancer and breast cancer. Treatment at advanced stages of head and neck cancer is usually followed intense surgical procedures, which leads to mutilation among patients. Mutilation imparts a sense of disgrace and causes a feeling of shame and stigma in the patient. The feeling of shame and stigma persists over time and affects the overall long-term survival of patients by deteriorating their quality of life. Objectives: Since shame and stigma is an important psychological domain of head and neck cancer, the present article aims toward evaluating the studies published so far for the assessment of shame and stigma in head and neck cancer and highlighting the lacunae in the existing research designs. The present study also aims to design a checklist that could be followed while developing, translating, or validating a psychometric instrument that aims to measure shame and stigma in head and neck cancer. Methods: In the present metanalysis, all articles published in the past years on shame and stigma in head and neck cancer was compiled using a predefined data extraction matrix. The available literature was compiled for major objectives of the study, the sample size used, major findings, and critical lacunae that need to be addressed. Results: Shame and stigma is a very important domain of psychological well-being in head and neck cancer patients, which yet not appropriately addressed and further need to be researched. Conclusion: Future studies could be based on the lacunae highlighted in the existing literature, and the prescribed methodology checklist could be taken into consideration while conducting further studies involving developing, translating, or validating a psychometric instrument related to shame and stigma in the head and neck cancer.

10.
Soft Matter ; 20(8): 1669-1688, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38315555

RESUMO

Herein, we discuss an imidazole-based molecular framework, which can successfully transform triplet excitons present in high triplet levels into singlet states. We explain the working mechanisms of different methods for collecting triplet excitons, including hot excitons or HLCT states. After the development of an hot exciton material by Ma and Yang, many studies have demonstrated that the organic conjugated molecules having imidazole core have possibilities to show high efficiencies via hot exciton pathways. Finally, we provide a detailed investigation of recently published hot exciton luminogens based on imidazole molecular frameworks. This review provides an overview of the molecular structures, frontier molecular orbital information, and glass transition temperature of developed luminogens as well as the efficiency of organic light-emitting diodes (OLED) devices.

11.
Int J Biol Macromol ; 261(Pt 1): 129621, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278381

RESUMO

The current study focuses on the development of gelatin-coated polycaprolactone (PCL) nanofibers co-loaded with luliconazole and naringenin for accelerated healing of infected diabetic wounds. Inherently, PCL nanofibers have excellent biocompatibility and biodegradation profiles but lack bioadhesion characteristics, which limits their use as dressing materials. So, coating them with a biocompatible and hydrophilic material like gelatin can improve bioadhesion. The preparation of nanofibers was done with the electrospinning technique. The solid state characterization and in-vitro performance assessment of nanofibers indicate the formation of uniformly interconnected nanofibers of 200-400 nm in diameter with smooth surface topography, excellent drug entrapment, and a surface pH of 5.6-6.8. The antifungal study showed that the nanofiber matrix exhibits excellent biofilm inhibition activity against several strains of Candida. Further, in-vivo assessment of nanofiber performance on C. albicans infected wounds in diabetic rats indicated accelerated wound healing efficacy in comparison to gauge-treated groups. Additionally, a higher blood flow and rapid re-epithelialization of wound tissue in the treatment group corroborated with the results obtained in the wound closure study. Overall, the developed dual-drug-loaded electrospun nanofiber mats have good compatibility, surface properties, and excellent wound healing potential, which can provide an extra edge in the management of complex diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Flavanonas , Imidazóis , Nanofibras , Poliésteres , Infecção dos Ferimentos , Ratos , Animais , Gelatina/química , Nanofibras/química , Candida , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Candida albicans
12.
Langmuir ; 40(5): 2745-2753, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38279959

RESUMO

Given the need, both academic and industrial, for new approaches and technologies for chiral discrimination of enantiomers, the present work demonstrates the development through rational design and integration of two new chiral platforms (molecular and membranous) for enantioselective recognition through visual as well as microscopic observation. The molecular platform (TPT) is based on the tryptophan derivative developed through the condensation of two tryptophan units with terepthaloyl chloride. While TPT based on l-tryptophan recognizes R-mandelic acid over the S-isomer, the host with reverse chirality (TPDT) recognizes S-mandelic acid over R-isomer. The role of chemical functionality in this sensitive recognition process was established experimentally by developing an analogue of TPT and by judiciously using different chiral analytes. Importantly, a detailed theoretical study at the molecular level revealed the U-shaped conformation of TPT, creating a cavity for accommodating a chiral guest with selective functional interaction resulting in the discrimination of enantiomers. Finally, a chiral polymeric mat of poly(methyl methacrylate) (PMMA)/polyacrylonitrile (PAN) (2:3) impregnated with TPT was developed via electrospinning. The resulting fibrous mat was successfully utilized for chiral recognition through microscopic and architectural observation. Hence, the present work reports simple chiral tools for enantiomeric recognition.

13.
J Colloid Interface Sci ; 660: 756-770, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271811

RESUMO

Despite the growing emphasis on eco-friendly nanomaterials as energy harvesters, scientists are actively searching for metal-free photocatalysts to be used in environmental remediation strategies. Developing renewable resource-based carbon quantum dots (CQDs) as the sole photocatalyst to harvest visible light for efficient pollutant degradation is crucial yet challenging, particularly for addressing the escalating issue of water deterioration. Moreover, the photocatalytic decomposition of H2O2 under visible light irradiation remains an arduous task. Based on this, we designed two types of CQDs, C-CQDs (carboxylic-rich) and A-CQDs (amine-rich) with distinct molecular surfaces. Owing to the higher amount of upward band bending induced by amine-rich molecular surface, A-CQDs efficiently harvest the visible light and prevent recombination kinetics resulting in prolonged lifetimes (25 ps), and augmented charge carrier density (35.7 × 1018) of photoexcited charge carriers. A-CQDs enabled rapid visible-light-driven photolysis of H2O2 (k = 0.058 min-1) and produced higher quantity of •OH radicals (0.158 µmol/sec) for the mineralization of petroleum waste, BETX (i.e. Benzene, Ethylbenzene, Toluene and Xylene) (k = 0.017-0.026 min-1) and real textile wastewater (k = 0.026 min-1). To assess comparative toxicities of both remediated and non-remediated real wastewater samples in a time and dose depended manner, Drosophila melanogaster was used as a model organism. The findings unequivocally demonstrate the potential of remediated wastewater for watering urban forestry.

14.
Nanomaterials (Basel) ; 14(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38251111

RESUMO

This paper delves into the development of a group of twisted donor-acceptor-donor (D-A-D) derivatives incorporating bicarbazole as electron donor and benzophenone as electron acceptor for potential use as blue emitters in OLEDs. The derivatives were synthesized in a reaction of 4,4'-difluorobenzophenone with various 9-alkyl-9'H-3,3'-bicarbazoles. The materials, namely, DB14, DB23, and DB29, were designed with different alkyl side chains to enhance their solubility and film-forming properties of layers formed using the spin-coating from solution method. The new materials demonstrate high thermal stabilities with decomposition temperatures >383 °C, glass transition temperatures in the range of 95-145 °C, high blue photoluminescence quantum yields (>52%), and short decay times, which range in nanoseconds. Due to their characteristics, the derivatives were used as blue emitters in OLED devices. Some of the OLEDs incorporating the DB23 emitter demonstrated a high external quantum efficiency (EQEmax) of 5.3%, which is very similar to the theoretical limit of the first-generation devices.

15.
Phys Chem Chem Phys ; 26(5): 3711-3754, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38221898

RESUMO

The design and synthesis of effective charge transporting (CT) and thermally activated delayed fluorescence (TADF) materials are in high demand to obtain high-performing OLED devices. Recently, the significant development in the field of OLEDs has led to the creation of numerous charge transporting and TADF materials with diverse structures. To further improve the device performance, a better understanding of the structural characteristics and structure-property relationships of these materials is essential. Moreover, to enhance the efficiency of OLEDs, all the electrogenerated excitons should be constrained in EMLs. The TADF mechanism can theoretically register 100% IQE through a potent up-conversion method from non-radiative triplet excitons to radiative singlet excitons. In this review, the structural importance, classification, physical properties, and electroluminescence data of some recent charge transporting and TADF materials are summarized and discussed. Moreover, their molecular structural dependence on functional groups and linkers is classified, which can enhance their charge transporting or emitting ability. To offer a potential roadmap for the further development of charge transporting and TADF materials, it is hoped that this study will encourage researchers to acknowledge their important role in OLEDs.

16.
Biomater Adv ; 157: 213729, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101068

RESUMO

Bioactive glasses have recently been attracted to meet the challenge in bone tissue regeneration, repair, healing, dental implants, etc. Among the conventional bio-glasses, a novel quaternary mesoporous nano bio-glass with composition 81S(81SiO2-(16-x)CaO-2P2O5-1Na2O-xMgO) (x = 0, 1.6, 2.4, 4 and 8 mol%) employing Stober's method has been explored for examining the above potential application through in-vitro SBF assay, MTT assay, antimicrobial activity and drug loading and release ability. With increasing the MgO concentration up to 4 mol%, from in-vitro SBF assay, we observe that HAp layer develops on the surface of the nBGs confirmed from XRD, FTIR and FESEM. MTT assay using MG-63 cells confirms the biocompatibility of the nBGs having cell viability >225 % for MGO_4 after 72 h which is more than the clinically used 45S5 bio-glass. We have observed cell viability of >125 % even after 168 h. Moreover, MGO_4 is found to restrict the growth of E. coli by 65 % while S. aureus by 75 %, confirming the antimicrobial activity. Despite an increase in the concentration of magnesium, nBGs are found to be non-toxic towards the RBCs up to 4 mol% of MgO while for 8 %, the hemolysis percentage is >6 % which is toxic. Being confirmed MGO_4 nBG as a bioactive material, various concentrations of drug (Dexamethasone (DEX)) loading and release kinetics are examined. We show that 80 % of loading in case of 10 mg-ml-1 and 70 % of cumulative release in 100 h. The mesoporous structure of MGO_4 having an average pore diameter of 5 nm and surface area of 216 m2 g-1 confirmed from BET supports the loading and release kinetics. We conclude that the quaternary MGO_4 nBG may be employed effectively for bone tissue regeneration due to its high biocompatibility, excellent in-vitro cell viability, antimicrobial response and protracted drug release.


Assuntos
Anti-Infecciosos , Óxido de Magnésio , Óxido de Magnésio/farmacologia , Óxido de Magnésio/química , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Vidro/química
17.
Int J Biol Macromol ; 258(Pt 2): 128978, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145692

RESUMO

Chronic wounds are prone to fungal infections, possess a significant challenge, and result in substantial mortality. Diabetic wounds infected with Candida strains are extremely common. It can create biofilm at the wound site, which can lead to antibiotic resistance. As a result, developing innovative dressing materials that combat fungal infections while also providing wound healing is a viable strategy to treat infected wounds and address the issue of antibiotic resistance. Present work proposed anti-infective dressing material for the treatment of fungal strains Candida-infected diabetic foot ulcer (DFU). The nanofiber was fabricated using polyvinyl Alcohol/chitosan as hydrogel base and co-loaded with silver nanoparticles (AgNP) and luliconazole-nanoparticles (LZNP) nanoparticles, prepared using PLGA. Fabricated nanofibers had pH close to target area and exhibited hydrophilic surface suitable for adhesion to wound area. The nanofibers showed strong antifungal and antibiofilm properties against different strains of Candida; mainly C. albicans, C. auris, C. krusei, C. parapsilosis and C. tropicalis. Nanofibers exhibited excellent water retention potential and water vapour transmission rate. The nanofibers had sufficient payload capacity towards AgNP and LZNP, and provided controlled release of payload, which was also confirmed by in-vivo imaging. In-vitro studies confirmed the biocompatibility and enhanced proliferation of Human keratinocytes cells (HaCaT). In-vivo studies showed accelerated wound closure by providing ant-infective action, supporting cellular proliferation and improving blood flow, all collectively contributing in expedited wound healing.


Assuntos
Quitosana , Diabetes Mellitus , Pé Diabético , Glicolatos , Imidazóis , Nanopartículas Metálicas , Micoses , Nanofibras , Humanos , Quitosana/química , Álcool de Polivinil/química , Prata/química , Nanopartículas Metálicas/química , Nanofibras/química , Glicóis , Candida , Antibacterianos/química
18.
Environ Sci Pollut Res Int ; 31(5): 6738-6765, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157163

RESUMO

Water is the utmost important element for the existence of life. In recent decades, water resources have become highly contaminated by a variety of pollutants, especially toxic dyes that are harmful to both living beings and environment. Hence, there is an urgent need to develop more effective methods than traditional wastewater treatment approaches for treatment of hazardous dyes. Herein, we have addressed the various aspects related to the effective and economically feasible method for photocatalytic degradation of these dyes employing carbon dots. The photocatalysts based on carbon dots including those mediated from biomass have many superiorities over conventional methods such as utilization of economically affordable, non-toxic, rapid reactions, and simple post-processing steps. The current study will also facilitate better insight into the understanding of photocatalytic treatment of dye-polluted wastewater for future wastewater treatment studies. Additionally, the possible mechanistic pathways of photocatalytic dye decontamination, several challenges, and future perspectives have also been summarized.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Carbono , Corantes , Catálise
19.
Front Glob Womens Health ; 4: 1181583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090047

RESUMO

The World Health Organization (WHO) and American Psychiatric Association (APA) have recognised premenstrual dysphoric disorder (PMDD) as an independent diagnostic entity, legitimising the distress and socio-occupational impairment experienced by affected women. However, the biological validity of this diagnosis remains inexplicit. This illness has also been criticised for a feminist-led, sympathetic reaction to the modern cultural challenges of urban, literate, employed, high-functioning women. This article systematically reviews existing literature on PMDD using the criteria established by Robins and Guze for the validity of a psychiatric diagnosis (clinical description, laboratory study, exclusion of other disorders, follow-up study, and family study). Despite the early recognition of premenstrual syndrome (PMS) in the 1950s, the research has encountered challenges due to two groups of proponents viewing it with psychologising bias and medicalising bias. PMDD is currently understood as the most severe form of PMS, characterised by the presence of psychological features. Recent evidence suggests that PMDD perhaps has neurodevelopmental underpinnings (attention deficit hyperactive disorder, adverse childhood experiences) affecting the fronto-limbic circuit that regulates the emotions. In addition, the affected individuals exhibit an increased sensitivity to gonadal hormonal fluctuations as observed during premenstrual, pregnancy, and perimenopausal phases of life. The prevalence is comparable between high-income countries and low- and middle-income countries (LAMIC), refuting the notion that it mostly affects modern women. Instead, a greater prevalence is observed in LAMIC. Despite the fact that educated women possess knowledge regarding the importance of getting help, there is a prevalent issue of inadequate help-seeking behaviour. This can be attributed to the perception of seeking help as an isolating experience, which is influenced by profound internalised stigma and discrimination in the workplace. Future studies must aim to develop culturally validated assessment tools and more research to understand the life course of the illness, in addition to systematically examining for more biological validators (animal models, genetics, imaging, neurotransmitters).

20.
AAPS PharmSciTech ; 25(1): 2, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114772

RESUMO

Targeted gemcitabine (GEB) loaded 5-N-acetyl-neuraminic acid (Neu5Ac) assembled chitosan nanoparticles (CA-NPs) were formulated by ionotropic gelation process and evaluated for physicochemical and morphological characterization, in vitro and in vivo studies in A-549 cells and lung cancer mice model, respectively. The mean diameter of GEB-CA-Neu5Ac-NPs determined by dynamic light scattering was 161.16 ± 7.70 nm with a polydispersity index (PDI) value of 0.303 ± 0.011 and its zeta potential and entrapment efficiency (%EE) were 40.3 ± 3.45 mv and 66.11 ± 1.94%, respectively. The in vitro cellular uptake studies showed that glycan receptor-targeted nanoparticles deliver significantly more amount (p < 0.001) of GEB into the A-549 lung cancerous cells than non-targeted nanoparticles. The cytotoxicity study using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay clearly demonstrated that GEB-CA-Neu5Ac-NPs have lower IC50 value (6.39 ± 3.78 µg/ml) than others groups that showed that the greater lung cancerous cells inhibition potential of targeted nanoparticles. The in vivo biodistribution of the GEB-loaded 5-N-acetyl-neuraminic acid conjugated chitosan nanoparticles was revealed that targeted nanoparticles showed higher accumulation and retention for an extended period of time due to the active targeting ability of Neu5Ac to glycan receptors. Histopathological examination showed significant recovery in the physiological architecture upon administration of targeted nanoparticles. The glycan receptor-targeted nanoparticles treated groups showed a significant decline in the number of metastatic lung epithelial cells, as compared to the untreated positive control group (p < 0.001) confirming higher anticancer efficacy of the GEB-CA-Neu5Ac-NPs.


Assuntos
Quitosana , Neoplasias Pulmonares , Nanopartículas , Camundongos , Animais , Gencitabina , Neoplasias Pulmonares/tratamento farmacológico , Benzo(a)pireno/uso terapêutico , Quitosana/química , Distribuição Tecidual , Microambiente Tumoral , Pulmão , Nanopartículas/química , Portadores de Fármacos/química , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...